
1 
 

Direct numerical solution of Burgers equation 

Mahya Hajihassanpour 

Abstract 

In the present study, the Burgers turbulence problem is solved numerically. For this aim, the 

convective and diffusive terms in the Burgers equation are discretized by applying the weighted 

essential non-oscillatory (WENO) and the sixth-order central compact difference methods, 

respectively. The performance of the WENO and sixth-order compact methods are examined by 

solving the wave and heat equations, respectively. Comparison of the numerical results obtained 

by these two methods with the analytical ones shows that they can effectively be used for 

discretizing the first and second-order derivative terms.  Indications are that the WENO-compact 

method can accurately be used for solving the non-linear partial differential equations such as 

Burgers equation. 

I. Introduction 

There is a wide range of spatial and temporal scales in the turbulent flows. In order to resolve 

the full spectra of turbulence, from the large scales to the Kolmogorov scale, a fine mesh should 

be used in a direct numerical simulation (DNS). In the present study, the Burgers turbulence 

problem has been simulated by solving the burgers equation using the weighted essential non-

oscillatory (WENO) -compact method. 

The present study is organized as follows: the governing equation is given in Section II. The spatial 

discretization including the WENO and the sixth-order compact methods are presented in Section 
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III, and the temporal discretization is given in Section IV. The boundary conditions are explained 

in Section V and the numerical results based on the present numerical methodology are 

presented in Section VI. 

II. Governing equation 

The burgers equation can be written as follows: 
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+
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where 𝑄 = 𝑢, 𝑓 = 0.5𝑢2, the kinematic viscosity 𝜈 = 5 × 10−4, and 𝑢 denotes the velocity. 

III. Spatial discretization 

1. WENO method 

The first-order spatial derivative in the Burgers equation (1) can be discretized as follows: 
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where 𝑚 is the maximum of the absolute eigenvalue entire domain, i.e., 𝑚 = |
𝜕𝐹

𝜕𝑄
|

𝑚𝑎𝑥
. The 

eigenvalue of the wave and burgers equations are 1 and 𝑢, respectively. 

2. Sixth-order compact method 

The second-order derivatives can be calculated by the sixth-order compact method as 
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where ℎ denotes the grid size.  

IV. Temporal discretization 

The governing equation (1) can be rewritten as: 

𝜕𝑄

𝜕𝑡
= 𝑅(𝑄) (18) 

𝑅(𝑄) = −
𝜕𝑓

𝜕𝑥
+ 𝜈

𝜕2𝑄

𝜕𝑥2
 (19) 

where 𝑅(𝑄) denotes the right-hand side vector. There are several methods in order to discretize 

Eq. (18). Two methods are formulated in this study, namely, the Euler and Fourth-order Runge-

Kutta methods. 

1. Euler method 

The Euler method can be written as follows: 

𝑄𝑛+1 = 𝑄𝑛 + ∆𝑡𝑅(𝑄𝑛) (20) 

where ∆𝑡 is the time step size and the superscript 𝑛 + 1 denote the solution at the time 𝑡 + ∆𝑡. 
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2. Fourth-order Runge-Kutta method 

The Fourth-order Runge-Kutta method can be written as follows: 

𝑄1 = 𝑄𝑛 +
1

4
∆𝑡𝑅(𝑄𝑛) (21) 

𝑄2 = 𝑄𝑛 +
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𝑄3 = 𝑄𝑛 +
1

2
∆𝑡𝑅(𝑄2) (23) 

𝑄𝑛+1 = 𝑄𝑛 +
1

1
∆𝑡𝑅(𝑄3) (24) 

V. Boundary equation 

For periodic boundary condition, we have 

𝐽𝑀 = 1 (25) 

𝐽𝑀 − 1 = 2 
(26) 

𝐽𝑀 − 2 = 3 
(27) 

where 𝐽𝑀 denotes the degree of freedom.  

VI. Numerical Results 

1. The solution of the wave equation using the WENO method 

The first-order wave equation can be written as follows: 
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𝜕𝑢

𝜕𝑡
=

𝜕𝑢

𝜕𝑥
 (28) 

The initial and boundary conditions considered are 

𝑢(𝑥, 0) = sin(𝑥) , 𝑥 = [0,2𝜋] (29) 

𝑢(0, 𝑡) = 𝑢(2𝜋, 𝑡) (30) 

The analytical solution can be found for this problem as 

𝑢(𝑥, 𝑡) = sin(𝑥 + 𝑡) (31) 

The rate of convergence of the WENO method can be seen in Table 1. As indicated in this table, 

the rate of convergence is close to 5 which is the optimal rate of convergence. The comparison 

of the obtained 𝑥-velocity profile by applying the WENO method with the analytical one is shown 

in Fig. 1 and as it can be seen the agreement between results are satisfactory. 

Table 1 The rate of convergence for the WENO method 

Grid Error Rate 

20 1.67E-06 4.77572 

40 6.10E-08 4.64653 

80 2.44E-09  
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Fig. 1 the 𝑥-velocity profile obtained by the WENO method for the wave problem 

2. The solution of the heat equation using the compact method 

The second-order heat equation can be written as follows: 

𝜕𝑢

𝜕𝑡
=

𝜕2𝑢

𝜕𝑥2
 (32) 

The initial and boundary conditions considered here are 

𝑢(𝑥, 0) = sin(𝜋𝑥) , 𝑥 = [−1,1] (33) 

𝑢(0, 𝑡) = 𝑢(2𝜋, 𝑡) (34) 

The analytical solution is 
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𝑢(𝑥, 𝑡) = sin(𝜋𝑥) exp(−𝜋2𝑡) (35) 

The numerical result and its comparison with the analytical solution is illustrated in Fig. 2 which 

shows that the compact method approximates accurately the second-order derivatives. 

 

Fig. 2 the 𝑥-velocity profile obtained by the compact method for the heat problem 

3. Burgers turbulence problem 

The initial condition [1] of this problem is given by an initial energy spectrum as follows: 

𝐸(𝑘) = 𝐴𝑘4 exp(−(𝑘/𝑘0)2) (36) 

𝐴 =
2𝑘0

−5

3√𝜋
,   𝑘0 = 10 (37) 

then, the initial velocity in the Fourier space can be obtained as 
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�̂�(𝑘) = √2𝐸(𝑘) exp(𝑖2𝜋𝜓(𝑘)) (38) 

where 𝜓(𝑘) is a uniform random number distribution between 0 and 1 at each wavenumber. As 

mentioned in Ref. [1]. This distribution also has to satisfy the 𝜓(𝑘) = −𝜓(−𝑘) conjugate 

relationship in order to obtain a real velocity field in physical space. Inversions from Fourier space 

are computed using a Fast Fourier transform algorithm (FFT) given by Press et al. [2]. 

The numerical results for the energy spectrum and velocity at different times are illustrated in 

Figures 3 and 4. As obvious in Fig. 3, the energy decays in time. The effects of the viscosity on the 

velocity profile is shown in Fig. 4. As expected, the amplitude of the velocity speed is decreasing 

in time. A grid with 512 grid points is used in these two figures. 

In Fig. 5, 64 randomly sample fields are constructed with different phases and simulated until 𝑡 =

5 sec and they are indicated by the black line. Ensemble-averaged results for the sample 

simulations are computed and presented by the red line in this figure. A grid with 512 grid points 

is used for the results presented in Fig. 5. 

A grid study is done to investigate the effect of the grid used on the obtained energy spectrum. 

As indicated in this figure, the fine grids result in more accurate results.  
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Fig. 3 the energy spectrum profile obtained by the WENO-compact method for the Burgers 

turbulence problem 
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Fig. 4 the velocity profile obtained by the WENO-compact method for the Burgers turbulence 

problem 
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Fig. 5 the Energy spectrum obtained by applying the WENO-compact method to the Burgers 

equation with 512 grid points. The red line indicates the average of the 64 simulations with 

different initial phases (the black lines). 
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Fig. 6 the grid study for the burgers turbulence problem. 

Conclusion 

In the present study, the Burgers turbulence problem is solved numerically by utilizing the fifth-

order WENO and the sixth-order compact methods for discretizing the first and second-order 

derivatives, respectively. The wave and heat equations are solved by the WENO and compact 

methods, respectively, and their accuracy is verified by comparison with the analytical results. 

Then, the WENO compact method is used for solving the Burgers equation and the energy 

spectrum and velocity fields are computed. The numerical results show that the present 

methodology can effectively be used in the direct numerical simulation (DNS) of the burgers 

turbulence problem. The decay of turbulence is shown in the numerical results and solutions at 
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different times are presented. Indications are that the compact and WENO method can 

accurately be used for simulating the burgers turbulence problem. 
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